Writing an NIH Data Management and Sharing Plan

Chen Chiu and Betsy Gunia

Website: dataservices.library.jhu.edu
Email: dataservices@jhu.edu
Johns Hopkins Research Data Repository: archive.data.jhu.edu
Today’s Topics

• Overview of NIH Data Management and Sharing Plans (DMSPs)
• Elements of DMSPs
• Introduction to the DMPTool
• Comments on things we are seeing in draft Plan we are reviewing

(We are NOT talking about the DMS budget or budget justification, but we will provide some resources for budgeting)

You will get a copy of these slides, including live URLs.
NIH Data Management and Sharing Policy: Effect On Jan. 25

• **Policy** Goals:
 ▪ Advance rigorous and reproducible research
 ▪ Promote public trust in research

• Requirement to write a Data Management and Sharing Plan
 ▪ Written as part of your proposal for grants due on/after Jan. 25, 2023
 ▪ Expectation to maximize data sharing with caveats
 ▪ Expectation that data are of sufficient quality to validate and replicate research finding

Data Services can help you write your plan through **consultation** and various **workshops**
Implementation Details

• Applies to research that results in/generates scientific data
 (see specific activity codes)

• NIH Program staff will assess DMS Plans

• Must comply with the version submitted in a proposal but can update during your regular reports

• If you are subject to both genomic data sharing policy and DMSP, you will submit one Plan!
 ▪ Details here: Implementation Changes for Genomic Data Sharing Plans
NIH Data Sharing Site

NIH Resources and Webinars
- [Supplemental guidance](https://sharing.nih.gov/) on topics like finding a repository, protecting privacy when sharing human research participants data, etc.
- [Data Sharing and Reuse Seminar Webinar Series](https://sharing.nih.gov/) recordings
- [Data Management and Sharing Policy](https://sharing.nih.gov/) Webinar Series recordings
- [National Network of the National Library of Medicine (NNLM) classes](https://sharing.nih.gov/)

NIH Data Sharing Site

https://sharing.nih.gov/ (main page)
https://sharing.nih.gov/faq (FAQs)
Elements of an NIH Data Management and Sharing Plan

- **Data Type**
- **Related Tools, Software and/or Code**
- **Standards**
- **Data Preservation, Access, and Associated Timelines**
- **Access, Distribution, or Reuse Considerations**
- **Oversight of Data Management and Sharing**
Example Plan:

Using natural language processing to determine predictors of healthy diet and physical activity behavior change in ovarian cancer survivors

Paraphrased Abstract: This study examines whether artificial intelligence can use speech and audio from health coaching calls to predict who is most likely to enact healthy lifestyle behaviors of diet and physical activity.

This project uses previously collected data, recordings of conversations from the Lifestyle Intervention for Ovarian Cancer Enhanced Survival (LIVES) Study, to:

1) Develop a machine learning model to identify patterns in the interactions between coaches and their participants that signal a likelihood of optimal behavior change of healthy lifestyle and then

2) Decompose the machine learning model in terms of “intervenable factors” to see how well they predict a healthy lifestyle behavior change.

NIH asks you to
“Briefly describe the scientific data to be managed, preserved, and shared”

• summary of the types and estimated amount of scientific data
• which scientific data from the project will be preserved and shared
• list of the metadata, other relevant data, and any associated documentation

By "final research data", we mean recorded factual material commonly accepted in the scientific community as necessary to validate research findings. Final research data do not include laboratory notebooks, partial datasets, preliminary analyses, drafts of scientific papers, plans for future research, peer review reports, communications with colleagues, or physical objects, such as gels or laboratory specimens.

https://sharing.nih.gov/faqs#/data-sharing.htm?anchor=50598
A general summary of the types and estimated amount of scientific data to be generated and/or used in the research. Descriptions may indicate:

- the data modality (e.g., imaging, genomic, mobile, survey)
- level of aggregation (e.g., individual, aggregated, summarized)
- the degree of data processing that has occurred (i.e., how raw or processed the data will be)
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Number of Files</th>
<th>Scale</th>
<th>Data type</th>
<th>Preserved</th>
<th>Shared</th>
</tr>
</thead>
<tbody>
<tr>
<td>A)</td>
<td>Audio recordings</td>
<td>1048</td>
<td>50 GB</td>
<td>WAV</td>
<td>5 years</td>
<td>No</td>
</tr>
<tr>
<td>B)</td>
<td>Patient demographics, clinical reported outcomes, and patient-reported outcomes</td>
<td>1</td>
<td>100 KB</td>
<td>Excel</td>
<td>5 Years</td>
<td>No</td>
</tr>
<tr>
<td>C)</td>
<td>300-second snippets obtained from the Llves telephone calls. Used for personality analysis</td>
<td>400</td>
<td>1 GB</td>
<td>MP3</td>
<td>5 years</td>
<td>No</td>
</tr>
<tr>
<td>D)</td>
<td>Numerical responses from ~4 annotator's personality perceptions obtained from (D)</td>
<td>500</td>
<td>200 MB</td>
<td>CSV</td>
<td>5 years</td>
<td>No</td>
</tr>
<tr>
<td>E)</td>
<td>Aggregated speaker-turn annotations for inter-annotator agreement analysis</td>
<td>50</td>
<td>50 MB</td>
<td>RTTM</td>
<td>5 years</td>
<td>No</td>
</tr>
<tr>
<td>F)</td>
<td>Linguistic and call content annotations of a subset of the Llves telephone calls</td>
<td>85</td>
<td>450 MB</td>
<td>JSON</td>
<td>5 years</td>
<td>No</td>
</tr>
<tr>
<td>G)</td>
<td>machine-learned models for processing predicting patient outcomes</td>
<td>4</td>
<td>12 GB</td>
<td>Binary or .tflite</td>
<td>10 years</td>
<td>Yes, ReDATA</td>
</tr>
<tr>
<td>H)</td>
<td>Computer code for the creation of machine-learned models (G)</td>
<td>10</td>
<td>200 MB</td>
<td>Python files</td>
<td>10 years</td>
<td>Yes, ReDATA</td>
</tr>
</tbody>
</table>
Data Type: Metadata and Documentation

A set of data that describes and gives information about other data

- Data dictionaries and codebooks
- Standard operating procedures
- Self-describing file formats
- README files
- Commented code
A brief listing of the metadata, other relevant data, and any associated documentation (e.g., study protocols and data collection instruments) that will be made accessible to facilitate interpretation of the scientific data.

We will make accessible all the computer code used to generate the machine-learned models (I) and the necessary documentation to use the computer code and models. No other metadata will be made accessible.

See Data Services’ self-paced online module for more information on documenting your research data

Documenting Your Research Data learning modules
Questions to Ask Yourself

• What kind of data will I collect/generate? How much? What file format(s)?
• Will I publicly share any of my data? If not, why?
• Will I use secondary data? Am I allowed to share?
• Do I have code that I can share, such as the code used for analysis?
• What documentation do I need to create so data can be validated and replicated?
Related Tools, Software and/or Code

- Data Type
- Related Tools, Software and/or Code
- Standards
- Data Preservation, Access, and Associated Timelines
- Access, Distribution, or Reuse Considerations
- Oversight of Data Management and Sharing
Why Share Related Tools, Software and/or Code?

• Why share tools, software and/or code if data are shared already?
 ▪ To reproduce your results
 ▪ To reuse your data
 ▪ To build upon your research
 ▪ To increase the citation of your paper
 ▪ To make your research transparent
We are going to show you two paragraphs from two published papers. Both described tools for analyzing data in the paragraph. You will read both of them and decide which one of them is more likely for other to reproduce their results.

You will answer the poll question after reading these paragraphs.
A custom MATLAB program was used to analyze audio data, and five parameters were applied to characterize the call design of an FM sonar vocalization. These five parameters are duration (ms), bandwidth (kHz), start and end frequencies of the FM sweep (kHz) and sweep rate (kHz ms$^{-1}$), all taken from the fundamental. Sweep rate is calculated by dividing bandwidth by duration and describes the slope of the FM call. Data analysis of video recordings was accomplished by digitizing the position of each bat and microphone and reconstructing the 3-D flight path via another custom MATLAB program.

We built multiple hierarchical models to examine how increased temperature and other factors influenced shrub seedling recruitment, growth and mortality, as well as tussock grass gap dynamics. For each model, we used Bayesian inference and fitted models in R 3.3.2 (R Core Team, 2016) using package rstan 2.14.1 (Stan Development Team, 2016). Detailed information about experimental design and analysis is provided in Supporting Information. Data and source code are available at: https://github.com/jscamac/Alpine_Shrub_Experiment. To aid in the reproducibility of this work, our code was written using a remake framework (FitzJohn, 2015). This allows others to readily reproduce our entire workflow from data processing, through to producing a pdf of this manuscript by calling remake::make. To safeguard against cross-platform issues and future software changes, we have embedded this framework within a Docker image (https://hub.docker.com/r/jscamac/alpine_shrub_experiment).
Why do you think you can or cannot reproduce these two examples?

- Related tools, software and code to analyze data are not available in Example 1

- Example 2 provides related tools, software and code to analyze their data
When possible, choose open source tools over proprietary ones or proprietary software but can export files to non-proprietary formats.
- Python scripts for data cleaning
- R scripts to conduct statistical analysis
- Jupyter Notebook documenting data analysis process
- Software downloaded from CDC website for data visualization (provide a link to download the software)
- Proprietary software used for data analysis (cannot be shared but can provide a link to purchase)
- REDCap survey template
- R packages/Python libraries used in data analysis
- MATLAB scripts for data processing
- SQL query to get data from EPIC
An indication of whether specialized tools are needed to access or manipulate shared scientific data to support replication or reuse, and name(s) of the needed tool(s) and software.

The machine-learned models will be distributed for their use with the Python (v.3.7+) programming language and will require one of the following free Python machine learning libraries (final decision pending): PyTorch (v.1.10.2) or TensorFlow (v.2.8.0).

If applicable, specify how needed tools can be accessed, (e.g., open source and freely available, generally available for a fee in the marketplace, available only from the research team) and, if known, whether such tools are likely to remain available for as long as the scientific data remain available.

Python (https://www.python.org/)*, PyTorch (https://pytorch.org/), and TensorFlow (https://www.tensorflow.org/) are all freely accessible for most modern computers and at the moment there are no plans to discontinue their support. More information is available at their respective websites.

*Do not include URLs or hyperlinks in your NIH proposals or DMSPs
Questions to Ask Yourself

• What tools/software do I use to process, analyze and visualize my data?
 ▪ Are they open source?
 ▪ Can I share my scripts?
 ▪ Can I convert my file formats to non-proprietary file formats?

• When sharing tools/software, provide the following information:
 ▪ License
 ▪ Source website/GitHub page
 ▪ Version
 ▪ Computational environment
Standards

- Data Type
- Related Tools, Software and/or Code
- Standards
- Data Preservation, Access, and Associated Timelines
- Access, Distribution, or Reuse Considerations
- Oversight of Data Management and Sharing
What are Standards?

What are standards?

- (Merriam-Webster): something established by authority, custom, or general consent as a model or example
- (Merriam-Webster): something set up and established by authority as a rule for the measure of quantity, weight, extent, value, or quality

It’s 25 degree outside.
What a beautiful day!

Twenty-five degree!?
It’s freezing!

What’s the problem here?
No **standard** unit for measuring temperature
What are data standards?

- **NCATS**: Data standard is an agreed upon set of rules that allow information to be shared and processed in a uniform and consistent manner.

- National Library of Medicine (NLM): [Health Information Technology and Health Data Standards](http://example.com)

Standardized ways to document and describe data to ensure interoperability of data across different systems and users.
Standards Example: COVID-19 Case Classification

<table>
<thead>
<tr>
<th>Value</th>
<th>Code Name</th>
<th>Code</th>
<th>Code System</th>
<th>Code Description</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab-confirmed case</td>
<td>Lab-confirmed case</td>
<td>C36292:C25458</td>
<td>NCI Thesaurus</td>
<td>The outcome of a laboratory test.:Having been established or verified. C36292:C25458</td>
<td></td>
</tr>
<tr>
<td>Point-of-care Confirmed</td>
<td>Point-of-care Confirmed</td>
<td>C154479:C25458</td>
<td>NCI Thesaurus</td>
<td>Services designed to be administered at the patient's bedside or other patient location.:Having been established or verified. C154479:C25458</td>
<td></td>
</tr>
<tr>
<td>Probable Case Based on Clinical and Epidemiologic Evidence</td>
<td>Probable Case Based on Clinical and Epidemiologic Evidence</td>
<td>C178498</td>
<td>NCI Thesaurus</td>
<td>The designation of a case as probable based on clinical criteria and epidemiologic evidence, without confirmatory laboratory results. C178498</td>
<td></td>
</tr>
<tr>
<td>Probable Case Based on Laboratory Results and Clinical or</td>
<td>Probable Case Based on Laboratory Results and Clinical or</td>
<td>C178499</td>
<td>NCI Thesaurus</td>
<td>The designation of a case as probable based on presumptive laboratory evidence and either clinical criteria or epidemiologic evidence. C178499</td>
<td></td>
</tr>
</tbody>
</table>

Where to Find Data Standards?

- RDA: https://rd-alliance.github.io/metadata-directory/standards/
- DCC: https://www.dcc.ac.uk/guidance/standards/metadata/list
- FAIRsharing: https://fairsharing.org/search?fairsharingRegistry=Standard

Look for data standards on your funder’s or discipline-specific data repository’s website.
Data and metadata formats:

Microsoft EXCEL format is used for patient demographics, clinical reported outcomes, and patient-reported outcomes. We prefer this because these files are accessed often for consultation and EXCEL offers a more flexible interface than other table formats such as CSV.

WAV format is used for storing LIvES telephone audio files. MP3 format is used for storing audio snippets (A). We use this format to save space and accessing time.

JSON format is used for phone interview metadata, speaker-turn annotations, and linguistic and call content annotations (C) and (E).
• An indication of what standards will be applied to the scientific data and associated metadata (i.e., data formats, data dictionaries, data identifiers, definitions, unique identifiers, and other data documentation).

Other data: Data dictionaries for the original LivES data are stored online in the UA REDCap instance and can be exported as CSV files if necessary. Any data dictionaries resulting from the current study are stored as CSV files in UA Box Health. Data identifiers and unique identifiers such as participant IDs are stored in encrypted Microsoft EXCEL files in the HIPAA-compliant cloud storage UA Box Health. Variable names and definitions for patient demographics, clinical reported outcomes, and patient-reported outcomes are stored in a Microsoft EXCEL file in UA Box Health.
Questions to Ask Yourself

• Are there any standards in my field?
 ▪ Common vocabularies?
 ▪ Standardized methods to collect data?
 ▪ Common file formats or schemas?

• Do I have a data dictionary/codebook for my data?

• What information can I provide so others can easily understand and reanalyze my data?
• The name of the repository(ies) where scientific data and metadata arising from the project will be archived

• How the scientific data will be findable and identifiable

• When the scientific data will be made available to others and for how long
<table>
<thead>
<tr>
<th>FAIR Principles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Findable</td>
</tr>
<tr>
<td>• Descriptive keywords</td>
</tr>
<tr>
<td>• Persistent Identifier (DOI)</td>
</tr>
<tr>
<td>Accessible</td>
</tr>
<tr>
<td>• Easy to retrieve by machines and humans</td>
</tr>
<tr>
<td>• Data in a repository</td>
</tr>
<tr>
<td>Interoperable</td>
</tr>
<tr>
<td>• Open formats</td>
</tr>
<tr>
<td>• Consistent vocabulary</td>
</tr>
<tr>
<td>Re-Usable</td>
</tr>
<tr>
<td>• Clear reuse licenses</td>
</tr>
<tr>
<td>• Good documentation</td>
</tr>
</tbody>
</table>
FAIR Principles

Depositing Your Data Into a Repository Improves the FAIRness of Your Data
Types of Data Repositories

<table>
<thead>
<tr>
<th>Discipline-Specific</th>
<th>Generalist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Access</td>
<td>WormBase</td>
</tr>
<tr>
<td></td>
<td>DRYAD</td>
</tr>
<tr>
<td>Controlled-Access</td>
<td>ICPSR</td>
</tr>
<tr>
<td></td>
<td>Vivli</td>
</tr>
</tbody>
</table>
Select a Data Repository

Scenario 1:
Your ICO or FOA requires a particular repository

Scenario 2:
Discipline-specific repository exists for your research field

Scenario 3:
No discipline-specific repository exists or your research is cross-disciplinary, general repository

NIH Guidance: Selecting a Repository for Data Resulting from NIH-Supported Research
JHU Guidance: https://browse.welch.jhmi.edu/nih-data-management/repository-selection
How to Find a Data Repository

- A list of NIH-supported data repositories
- Most accept data from NIH-funded projects (and others), with some exceptions

- A registry of research data repositories
- Search for a repository appropriate to host your data

 https://www.re3data.org/

- Available for JHU Researchers (SOM, SPH, KSAS, WSE, SOE)
- Free for data smaller than 1 TB

https://archive.data.jhu.edu

Still need help finding? Just ask us at JHU Data Services!

dataservices@jhu.edu
dataservices.library.jhu.edu/
JH Research Data Repository https://archive.data.jhu.edu available for JHU Researchers. Contact dataservices@jhu.edu to deposit data.

More information about JH Research Data Repository and FAQs: http://dataservices.library.jhu.edu/archiving/
The name of the repository(ies) where scientific data and metadata arising from the project will be archived.

The computer code, machine-learned models, and documentation will be made publicly available through the University of Arizona Research Data Repository (ReDATA) and through the HuggingFace website (widely used within the machine-learning community) under an Apache 2.0 License. Although there are NRG-oncology approved repositories, most of them deal with specimens and images and none with machine-learned models of language interactions and so none of them were a good fit for this project.
Persistent Unique Identifier

How the scientific data will be findable and identifiable, i.e., via a persistent unique identifier or other standard indexing tools

- A persistent identifier is a long-lasting reference to a document, file, web page, or other object
- DOI (digital object identifier)

 doi:10.7281/T1/QQ77OB

- Journals often mint one for your article, but usually ask for a DOI for your data
- Many repositories, such as the Johns Hopkins Research Data Repository, will mint one for your data
How the scientific data will be findable and identifiable, i.e., via a persistent unique identifier or other standard indexing tools.

The machine-learned models and associated metadata will be findable on ReDATA through a Digital Object Identifier (DOI) as well as a search engine at https://arizona.figshare.com/. It will also be findable through the search engine at https://huggingface.co/models
NIH data management and sharing policy states “NIH encourages scientific data be shared as soon as possible, and no later than time of an associated publication or end of the performance period, whichever comes first.”

JHU data retention policy states “Research Data should be stored ... for a minimum period of 5 years after the date of any publication” (New policy will require 7 years of data retention)
When the scientific data will be made available to other users (i.e., the larger research community, institutions, and/or the broader public) and for how long?

The machine-learned models and code will be available from December 2022 and for at least 10 years (as guaranteed by ReDATA). We cannot guarantee availability on the other two repositories.
Questions to Ask Yourself

- Will I publicly share any of my data? If not, why not?
- When will I share my data with others?
- Where should I share and preserve my data (e.g., repository name)?
- What policies around data preservation am I beholden to, even if I am unable to publicly share my data?
Access, Distribution, or Reuse Considerations

- Data Type
- Related Tools, Software and/or Code
- Standards
- Data Preservation, Access, and Associated Timelines
- Access, Distribution, or Reuse Considerations
- Oversight of Data Management and Sharing
• Factors affecting subsequent access, distribution, or reuse of scientific data
• Whether access to scientific data will be controlled
• Protections for privacy, rights, and confidentiality of human research participants
Describe Limitations to Data Sharing

Describe and justify any applicable factors or data use limitations affecting subsequent access, distribution, or reuse of scientific data.

This includes:
- Informed consent
- Privacy/confidentiality protections
- Data or code licenses

See [Frequently Asked Questions](#) for examples of justifiable reasons for limiting sharing of data.
Regardless of where you plan to share your data, your participants need to understand

- **how** others can access it (e.g., open, DUA),
- **level of deidentification** and
- the **relative risk of reidentification**.

- JHU SOM IRB
 - Boilerplate for data sharing
 - Organization Policy on Informed Consent Process and Documentation
- JHU BSPH IRB Consent form templates
- NIH’s Informed Consent template (link)

Work with IRB to make sure your consent language makes sense given the repository that you are sharing your data in before you collect data.
• How to decide where to share human participants data?
 ▪ Share fully de-identified data sets via an open access data repository
 o May need Data Trust approval
 o Consent form* which allows for data sharing
 ▪ Share limited data sets (LDS) via a controlled-access data repository
 o IRB approval
 o Data Use Agreement (DUA): JHU Research Administration can help with this

For *secondary data*, be aware of any existing license restrictions and mention those in your Plan if applicable.

For *primary data*, you may be able to assign a particular license to your work.

Conditions include:

- Requirement of data/code citation
- Possibility of commercial use
- Ability for others to modify your data/code

As a general rule, you will want to have the most permissive license as possible.
Data and Code License

• License for data
 ▪ Creative Commons: https://creativecommons.org/about/cclicenses/
 ▪ Creative Commons License Chooser: https://creativecommons.org/choose/#

• License for software
 ▪ Types of software licenses: https://choosealicense.com/licenses/
 ▪ Choose a software license: https://choosealicense.com/

Your repository most likely will either let you choose a particular license or automatically assign one to your data
Whether Access to Scientific Data will be Controlled

Public Sharing: completely open with no restrictions in terms of finding and downloading data.

Controlled Sharing: Different repositories have differing levels of control. Examples of controls include a requirement that people sign a DUA to get access or requirement that a human review the data requestors request.

[Data Sharing Tiers for Broad Sharing of Clinically Derived Data](#) from Data Trust
Protections for privacy, rights, and confidentiality

Outline the steps you will take for protecting the privacy, rights, and confidentiality of prospective participants (i.e., through de-identification, Certificates of Confidentiality).

If you are using a controlled-access repository, discuss the procedures and policies of that repository. For example, a repository may:

- Require all data be deidentified to the Safe Harbour level
- Only share data with researchers once they have been vetted or signed a DUA
- Use HIPPA-compliant storage system

Supplemental Information to the NIH Policy for Data Management and Sharing: Protecting Privacy When Sharing Human Research Participant Data
Describe any applicable factors affecting subsequent access, distribution, or reuse of scientific data related to:

In accordance with the terms of our IRB-approved research plan, we will only share the resulting ~10 machine-learned models and associated computer code (G-I). We'll ensure that we create models where no HIPAA or other text information is recoverable. The models will be made publicly available under the Apache 2.0 license with no restrictions on academic or commercial re-use.
Questions to Ask Yourself

• How do I want others to use and cite my data/software? Which license fits my requirements best?
• Are there Protected Health Information (PHI), Personally identifiable information (PII) or sensitive information in my data?
• Can I fully remove them?
• If not, what restriction I can apply to my data in order to protect the privacy of my research participants?
Oversight of Data Management and Sharing

- Data Type
- Related Tools, Software and/or Code
- Standards
- Data Preservation, Access, and Associated Timelines
- Access, Distribution, or Reuse Considerations
- Oversight of Data Management and Sharing
The PIs for this project, Tracy Crane and Steven Bethard, will ensure that the data management plan is followed by auditing the project personnel on a monthly basis and monitoring the project through an online project management tool (Trello).

Sarah Jane Wright is one of the data liaisons between the LIvES project and the current project. She is in charge of the patient outcome data, REDCap, questionnaire data, and patient personal records and identifiers. Sarah ensures that sensitive data is accessed on a case-by-case basis in a secure way through REDCap.

Indicate how compliance with the Plan will be monitored and managed, frequency of oversight, and by whom (e.g., titles, roles)
Questions to Ask Yourself

• Who will be in charge of the oversight of this DMSP?
 ▪ Usually this will be the PI and co-PI(s)

• Who will be in charge of different tasks in this DMSP?
 ▪ List each staff member and the task they are in charge of
 ▪ De-identification
 ▪ Day-to-day management
 ▪ Uploading of data to chosen repository
 ▪ Documentation
Allowable Costs for Data Management and Sharing

- Curating data and developing supporting documentation
- Local data management considerations
- Preserving and sharing data through established repositories
- De-identifying data

NIH Guidance for [Budgeting for Data Management & Sharing](#)
JHU Guidance for [Estimating Data Management and Sharing Costs](#)
Sign in DMPTool: https://dmptool.org
Create a New Plan

Create a new plan

Before you get started, we need some information about your research project to set you up with the best DMP template for your needs.

* What research project are you planning?
 NIH DMSP workshop demo
 - or - mock project for testing, practice, or educational purposes

* Select the primary research organization
 Research organization
 Johns Hopkins University (jhu.edu)
 - or - No research organization associated with this plan or my research organization is not listed

* Select the primary funding organization
 Funder
 National Institutes of Health (nih.gov)
 - or - No funder associated with this plan or my funder is not listed

Which DMP template would you like to use?

NIH-GEN DMSP (Forthcoming 2023)

We found multiple DMP templates corresponding to your funder.

Create plan | Cancel
NIH DMSP workshop demo

This plan is based on the "NIH-GEN DMSP (Forthcoming 2023) " template provided by National Institutes of Health (nih.gov) - [ver: 3, pub: 2022-03-14].

<table>
<thead>
<tr>
<th>Section</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type (0 / 3)</td>
<td></td>
</tr>
<tr>
<td>Related Tools, Software and/or Code (0 / 2)</td>
<td></td>
</tr>
<tr>
<td>Standards (0 / 1)</td>
<td></td>
</tr>
<tr>
<td>Data Preservation, Access, and Associated Timelines (0 / 3)</td>
<td></td>
</tr>
<tr>
<td>Access, Distribution, or Reuse Considerations (0 / 2)</td>
<td></td>
</tr>
<tr>
<td>Oversight of Data Management and Sharing (0 / 1)</td>
<td></td>
</tr>
</tbody>
</table>
Briefly describe the scientific data to be managed, preserved, and shared.

Types and amount of scientific data expected to be generated in the project: **Summarize the types and estimated amount of scientific data expected to be generated in the project.**

Describe data in general terms that address the type and amount/size of scientific data expected to be collected and used in the project (e.g., 256-channel EEG data and MRI images from ~50 research participants). Descriptions may indicate the data modality (e.g., imaging, genomic, mobile, survey), level of aggregation (e.g., individual, aggregated, summarized), and/or the degree of data processing that has occurred (i.e., how raw or processed the data will be).

For example:**

This project will produce **[data type, e.g., imaging, sequencing, experimental measurements]** data generated/obtained from **[data modality, e.g., instrument, method, survey, experiment, data source]**. Data will be collected from **[number]** of research participants/specimens/experiments, generating **[number]** datasets totaling approximately **[amount of data]** in size. The following data files will be used or produced in the course of the project: **[list input data files, intermediate files, and final, post-processed files]**. Raw data will be transformed by **[analysis, method]**, and the subsequent processed dataset used for statistical analysis. To protect research participant identities, **[individual, aggregated, summarized]** data will be made available for sharing.

If working with human subjects, consider adding: Data collection will be performed at clinical sites in the **[location]** area(s) with **[population(s) being studied, i.e., T2 Diabetes]**.
Request expert feedback

Click below to give data management staff at Johns Hopkins University (jhu.edu), the Plan Owner’s org, access to read and comment on your plan.

Your draft data management plan (DMP) has been sent to JHU Data Services. One of our consultants will provide feedback on your DMP within 2 business days.

Thank you,

JHU Data Services

https://dataservices.library.jhu.edu/
dataservices@jhu.edu

You can continue to edit and download the plan in the interim.
NIH DMSP workshop demo

Download settings
Optional plan components
- project details coversheet
- section headings
- question text (will only display your answers)
- unanswered questions

PDF formatting

Font
- "Times New Roman", Times, Serif
- Size (pt): 11

Margin (mm)
- Top: 25
- Bottom: 25
- Left: 25
- Right: 25

Download Plan
Where to Find Sample Plans?

- **Sample Plans** from NIH (e.g., clinical, secondary data, genomic, survey)
- **DMPTool's** ongoing collection of **publicly shared data management plans** that can be filtered by funder, institution and subject
- DMP examples from **University of Arizona**
- **Example DMS Plans on GitHub**
Observations After Three Weeks of Reviewing Plans

• Using the sample language is fine, but make sure that it makes sense in your Plan.
• Remember that NIH wants you to share enough data and documentation so that your research can be reproduced and validated:
 ▪ If you do not want to share some parts of your data, a justification for not sharing should be provided (What are justifiable reasons for limiting sharing of data?)
• Give yourself time to write your Plan and plan enough time for Data Services to review your Plan.
• One Plan per grant application, doesn't matter how many data products you are going to generate nor individual projects under that application.
How to Start?

• Use the DMPTool* and write your Plan, element by element

• Use the "Request Feedback" function to notify us that you want a review

• We will provide feedback within two business days

• Upload your Plan in pdf to the new “Other Plan(s)” field in FORMS-H

* You don’t have to use the DMPTool; just email your draft to us at dataservices@jhu.edu
JHU Resources for NIH Policy

- Overview of policy and JHU resources/contacts (JHURA)
- NIH DMSP support and flyer (Data Services)
- Guide for NIH Data Management and Sharing Policy (Welch and Data Services)
Sign up for other Data Services workshops!

https://jhu.libcal.com/calendar/workshops

Topics include:
- Love Data Week
- ArcGIS and mapping
- Data cleaning and visualization with R or Python
- De-identifying human subject data
- Data cleaning with Open Refine

Register at: https://jhu.libcal.com/calendar/workshops
Contact JHU Data Services

GO TO
dataservices.library.jhu.edu

EMAIL
dataservices@jhu.edu

SHARE DATA AT
archive.data.jhu.edu

Helping you

FIND
USE

MANAGE
VISUALIZE

SHARE

DATA

https://www.surveymonkey.com/r/NIH-DMSP