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Introduction

Jim Gray

The Fourth Paradigm of Science
emerged, driven by Open Data

There is a new revolution in science, 
  transforming everything    

Enabled by the exponential growth in 
our computational technologies, 
using massively parallel “scale-out”



Agenda



The Exponential Evolution of Science



Science is Changing Exponentially

THOUSAND YEARS AGO

science was empirical 

describing natural phenomena

LAST FEW HUNDRED YEARS

theoretical branch using models, 

generalizations

LAST FEW DECADES

a computational branch simulating 

complex phenomena

LAST FEW YEARS

data and AI driven, synthesizing theory, 

experiment and computation with statistics  

►new way of thinking required! AI coming
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Science: From Fractal to Convergence

Data Science is becoming the “New Math”, the shared language of science!

Natural 
Philosophy

Physical 
Sciences

Earth 
Sciences

Life 
Sciences

Theoretical
Experimental
Computational

Theoretical
Experimental
Computational

Theoretical
Experimental
Computational

Historically science was 
fragmenting into narrower
and narrower sub-disciplines

Today we see a CONVERGENCE!

Data
Science,

AI

Physics

Biology

Earth 
Science

All Physical and Life Science 
domains share common data 
science/AI methods and approaches

Astronomy Chemistry

Medicine



Tomorrow’s Scientists are Multi-Disciplinary

We need to train П-shaped people …

I
Our higher education is training deep 
but narrow people, I-shaped

TAs we get older, we become T-shaped, 
with a shallow but broad layer on top

New disciplines emerge when two domains intersect
=> Watson and Crick (physicist+ornithologist) => genomics

Scientists need to become П-shaped, grow a deep leg 
in data science/AI as well

ITП



The Changing Granularity of Science



The Emergence of Big Science

• From “manual production” of scientific data to the “industrial revolution”

• 1920-50 : Small experiments by few individuals, slowly growing

• 1960-: Big Science, costing $1B+, take decades, very risk-adverse, thousands of people

The data is here to stay for decades…

Van der Graaf -> Cyclotron -> Synchrotron -> National Labs
LHC 

SSC 

This is a big difference

• Past: Experiments rapidly followed one another, data sets had a short life

• Today: Big Science experiments (LIGO, LHC, SKA, LSST, OOI, NEON,…) 
may not be surpassed by another variant in our lifetime



Today’s Hot Science is Mid-Scale

• The optimum scale of science is changing today
– more in the middle

• NSF MSRI, NIH U01, public-private partnerships 
=> Sky Surveys, Human Genome …  $10-100M

• Create a unique instrument (microscope, telescope, simulation…)
• Use cutting edge technology, take risks, push budgets to the limit,

maximize science, generate petabytes of data, use AI to analyze

• Agility – important because of the exponential technology growth
• Highly automated, robotic experiments – the next step in scientific data acquisition 

Even smaller groups can generate petabytes of open data using advanced technology!

TEM FPGA

Enormous fresh creative energy liberated, the “sweet spot” for science!



Agility vs Tenacity – How can We Compete?
• Extremely agile changes in the industry (particularly in AI)

• Google, Facebook, Amazon, Microsoft

• Universities cannot compete with the industry in agility
• Faculty hires are for 40 years…

• But we can compete in tenacity and high-value data!

• More mid-scale projects emerging at Universities

=> generating petabytes

• Innovative uses of AI will optimize experiments and discover new patterns

• This requires the data sets to be “AI-ready” 

Most breakthroughs come from a unique data set 

(Human Genome, SDSS, ImageNet) – combined with a disruptive idea



Mid-Scale Example: Sloan Digital Sky Survey

“The Cosmic Genome Project”

• Started in 1992, SDSS-II finished in 2008
• Data is entirely public, open and free
• Database built at JHU 
• Project marked a transition in astronomy

• From manufacturing to mass production

SkyServer: Prototype in 21st Century data access

• Visual interface integrated with object-relational DB

• Remarkably fast adaptation by the community 

• 10M distinct users vs. 15,000 astronomers

• The emergence of the “Internet Scientist” 

• Collaborative server-side analysis

Jim Gray

Scientists are becoming publishers and curators of large data!



Lessons Learned

• Statistical analyses and collaboration easier with DB than flat files

• Collaborative features essential

• Need to go beyond SQL scripting => Jupyter and Deep Learning

• Everything is spatial

• Multiple access patterns (visualization, interactive and batch analyses)

• Automation is needed for statistical reproducibility at scale

• Scaling out was much harder than we ever thought

• Always need deep links to the raw files (in order to find systematic errors)

• Find a common processing level that is “good enough” 
and earn the TRUST of the community

• Moving PBs of data is hard, importance of smart data caching

Find the right tradeoffs -- do not try to do “everything for everybody”



The Evolving Data Analysis

The evolution of the music industry is a good example: 

LP/CD

=> Spotify/Pandora

=> iTunes

What are the data equivalents?

=> Run in the cloud, 
     view the result

Google Colab, 
SciServer

=> Run queries at 
     project servers 

Astronomy archives, SkyServer, 
IVOA, MAST, NED,…

Download 
all data 

Send tapes, disk, 
sneakernet

Scientific software needs to be Analysis Ready and Cloud Optimized (ARCO)

Ryan Abernathey (Columbia)



Aggregating Data



Implications of Big Data

• Two kinds of errors: statistical and systematic
• Statistical errors decrease with 1/ 𝑁

• Big Data needs parallelism: many similar, inexpensive devices
• This scale-out is everywhere, like cloud computing
• Same in experiments, many similar cheap sensors 

• phones, wearables, CubeSat…

• However, similar is not identical!
• Systematic errors: subtle instrumental biases
• If obvious, we call it calibration, and do it
• If not, it remains often undetected

• In most scale-out projects the biggest challenges are the systematic errors
• But: these can be corrected in software, much cheaper overall!
• Particularly important for AI training sets (“garbage in, garbage out”)



Statistical and Computational Challenges
• Data volume and computing power double every year,

• no polynomial algorithm can survive, only N log N

• Minimal variance estimators scale as N3,

they also optimize on the wrong thing

• The problem today is not the statistical variance
• systematic errors => optimal subspace filtering (PCA)
• If it is so large that it is obvious => calibration

• We need incremental algorithms, where computing 
is part of the cost function:

• the best estimator in a minute, day, week, year?
• … like training a neural network



SkyServer > SciServer: Scalable Data Aggregator

• The main challenge in creating big data sets is DATA AGGREGATION

• Difficult to aggregate large data sets, yet the joint analysis requires co-location

• Most frequent mistake: trying to create the “mother of all databases”

• Building integrated ontologies/data models is hard, becomes combinatorically complex

• Real life uses require interactive exploration before big analysis

• Our goal is to enable interactive, collaborative use of Petabyte-scale data

• The JHU SciServer philosophy is “keeping in simple”

• Store all the data together for the best economies of scale as distinct Data Contexts

• Users have their own databases and resources to create value added aggregations (links)

• These can be shared at will with collaborators at owners’ discretion

• We can add new datasets/modalities in isolation very quickly => linear complexity

The SciServer is uniquely capable of managing many Petabytes of data,

and supporting data-intense collaborations



Turning Lessons into Practice
• We saw many repeating patterns for data intensive projects in different domains
• Now we are trying to turn these into processes that can be replicated
• Need to strike the right tradeoff of protecting the valuable data, while allowing

creative (disruptive) innovations
• Invest more in critical sustainable human infrastructure

• Key roles: Architects, Implementers, Disruptors, Trainers

• Create a sustainable model for massive data and compute infrastructure 
• The right balance between local and cloud resources
• Active support in the creation of novel data resources/databases

• Innovate in data collection
• Use AI in optimizing next-generation quasi-autonomous experiments

• Build sustainable funds for preserving high-value data 
• Cost is <0.25%/year of price of the experiment

All of these require ongoing commitments, not one-shot investments



Mid-Scale Science => “Game Changing” Data

Leapfrog – “non-incremental” – but still Mid-Scale Science – Similarities
• (2001- ) Sloan Digital Sky Survey (SDSS) – grew data by a factor of 100,

still the world’s most used astronomy facility,
4.6B web hits, 713M SQL queries, 10M users, 10K papers, 500K citations

• (2006- ) Turbulence database (JHTDB) the world's largest simulations,
the "virtual observatory" of turbulence, 
1.5PB of data, 200 trillion points delivered to the world

• (2016- ) AstroPath (JHMI) – 1000-fold increase in data for cancer immunotherapy, 
astronomy => pathology,  soon Open Cancer Cell Atlas with 1B+ cells
16T pixels, 500M cells

• (2017- ) POSEIDON (JHU/MIT/Columbia) building the world's largest ocean circulation 
model, 10x higher resolution, open petascale interactive laboratory
2.5PB of data on its way

Using similarities to the SDSS, we are able to create unique leapfrog projects over and over 



http://turbulence .pha.jhu.edu/

296,940,985,463,805 points queried



AstroPath: Atlas of Cancer Cells

• Astronomy meets Pathology
• with Prof. Janis Taube (JHMI BKI)

• Studying the tumor microenvironment to understand cancer immunotherapy
• Spatial interactions of activated T cells and tumor near the tumor boundaries

• Goal: increase data collection by a factor of >1,000
• 400GB mosaic of 35-band multiplex images/slide (from 10 to 2000 images/slide)
• 7 markers (lineage + PD-1, PD-L1), more markers via additional panels
• Use a farm of automated microscopes => 2PB/year
• Heavy use of parallel processing

• Tumor boundaries, cell geometries represented as GIS polygons
• Dynamic computation of nearest neig hbors, spatial relations
• Interactive viewer like the SkyServer, or Google Maps
• Processing workflows mostly automated
• Working on validating a large enough training set for Deep Learning
• Databases linked to SciServer, collaborative Jupyter, 

Keros/TensorFlow, R
• Increasing integration with AI tools for tissue annotation, 

segmentation and classification, biomarker inference

Current data in the database

• 8 Cohorts, 692 slides
• 365,023 High Powered Fields
• 564M detected cells
• 257M unique cells
• 10B cell pairs
• 22 trillion pixels  (whole SDSS was 7 Tpixels!)
• Additional 100+ slides already scanned

   with multiple tumor types



The Emergence of AI



AI in Science Today

• Much related to posterior analyses of existing data
• Proxy simulations (turbulence, cosmology, cloud formation)

• Recognizing patterns (image segmentation, Alpha fold, denoising)

• Compression, discovering correlations

• Anomaly alerts

• Recent developments with Large Language Models
• They can recite much of the literature

• ChatGPT – beware of “hallucinations”



Using LLMs

• Solve the “Long Tail” problem
• Most scientific data sets are small, and appear as tables in papers

• Publishing them in a reusable digital form very hard

• Efforts to capture this have been a total failure

• But: we could (and should) use the LLMs to harvest data
• We have the digital text of the surrounding information in the paper

• We also have to list of coauthors and their papers for broader context

• The AI framework can extract not just the data but their meaning and context



Automatic Code Generation

• We have now LLMs trained on github etc (Copilot)

• They are quite successful in writing code from scratch

• Science is interactive: we often explore data in a hit and miss fashion
• We start with a smaller subset of data, try many things

• Lots of scattered dead-end 

• We still do a manual cleanup of our attempts to write a clean script in the end

• Wouldn’t it be nice to have a button on top of a Jupyter notebook
that would generate a clean script from my attempts?



Explainable AI

• Scientists do not like Black Boxes

• We need to know what is happening inside

• The Physics of AI is emerging in interpreting the evolution of the 
complex networks (has its roots in spinglasses)

• The initially random weights of a network develop long range 
correlations during learning – like a phase transition

• Identify symmetries in the problem
• Latent layers of the autoencoders



Finding Systematic Errors?

• Why can’t we feed also all our instrumental parameters to a Neural 
Network?

• If there are instrument-dependent biases, we should be able to find 
them in a  systematic fashion

• TB example…

• The removal of systematics, finding optimal calibrations 
could be automated instead of “black art”

AI will be probably just as important in our data acquisitions as it is in the analyses!



Prioritizing for Relevance

• Delicate tradeoff between the scientific value and the cost of preservation

• One extreme – store everything, go bankrupt!

• Other extreme – collect too little data, not enough for the science!

• LHC lesson

Tradeoffs are essential: cannot do everything for everybody (9-1, 99-1 or 999-1?)

“Do you have enough data or would you like to have more?”

• In-situ (AI) hardware filters data, optimizing for “new science”
─ Only 1 in 10M events saved (9999999:1)
─ Pattern recognition and filtering near the detectors:

─ “first meter problem” at the edge

• Resulting “small subset” is still 10-100 PB



Collect More RELEVANT Data!
• Need to dramatically improve our experimental design…
• Artificial Intelligence in large-scale experiments: 

use AI before and while we collect the data

If an AI algorithm can drive our cars, why cannot it run our microscopes?

• It is already happening at CERN, material science, drug design, astronomy

• Maybe this will be the Fifth Paradigm, algorithms control our experiments
 => also make intelligent, real-time decisions

Target 
selection

Rapid
analysis

Model
refinement

Rapid 
feedback

Adaptive 
feedback

Photometric
processing

Science
output

Adaptive 
feedback

mins/hours

1 monthSupported by the Schmidt Family Foundation 
at JHU and Princeton:  Use AI Feedback for the PFS project

Put the telescope in the 
reinforcement loop!



The Challenges Are Not Technical

beyondrecognition.net



Data Lifecycle => Service Lifecycle

• The value of our national investments in science is the DATA!

• The high-value open data sets will live for decades

• Results in much more data reuse

Smart data platforms are constantly evolving – following the technology

• There is also a Service Lifecycle
• The data is becoming smarter
• Smart platforms need to be maintained for decades



The Economics of Long-Term Data

• $100B+ investments => Today’s Open Science data
– National Treasure => must be preserved

Where is the Smithsonian of Data? 

• The Smithsonian is hosting physical specimen from historical 
scientific  discoveries  => private-public partnership

• Conflict: Short term federal funding cycle 
 vs long term data preservation

• Different federal agencies have different strategies
NASA Data Centers, NIH Data Commons, NSF MREFC, 
DOE National Labs, NOAA, NCAR, EPA…
Coherence/convergence is yet to emerge… (NIST RDaF…)



The Challenges are Non-Technical

The Four Paradigms of Science
▪ Empirical → Theoretical → Computational → Data Driven -> AI?

Organization of science is changing
▪ Granularity of science (small → bimodal → mid-scale)
▪ Data sharing & long-lived data → Accelerating the change

Changing relationship between scientists and data
▪ Data only in papers → Now big datasets → Curation responsibility
▪ A trusted data intermediary → Empowers sharing and reuse
▪ Future: Automation is the key, AI everywhere
▪ Creation of high value data sets is crucial for success

AI is changing Science
▪ We only see the outlines of the future
▪ Every aspect of science will be changed by AI
▪ AI may even take control of our experiments
▪ Lots of challenges ahead, how to compete, who to compete with
▪ Universities will be transforming, including how we train students
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