
Website: dataservices.library.jhu.edu

Email: dataservices@jhu.edu

Johns Hopkins Research Data Repository: archive.data.jhu.edu

Version Control: 
Using Git and GitHub

Chen Chiu

These materials are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 
International License, attributable to Data Services, Johns Hopkins University.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://dataservices.library.jhu.edu/


GitHub account

• Create a free GitHub account

Software installation

• GitHub Desktop https://desktop.github.com/

What Do You Need?

https://desktop.github.com/


Workshop Topics

• Version control (What is it and Why is it important?)

• Git terminology and basic concepts

• Set up GitHub Desktop

• GitHub Desktop demo

• Resources



What is Version Control

Version control is a system that 
records changes to a file or set of 
files over time so that you can recall 
specific versions later. 

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

https://www.linuxnix.com/what-are-the-top-version-control-systems/

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://www.linuxnix.com/what-are-the-top-version-control-systems/


How it works:
• Keep a local database of versions
• Check out the latest version to work on 

Possible issues:
• It is hard for more than one person to 

work on a file
• All versions are stored locally

Local Version Control Systems

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control


How it works:
• All versions are stored in a central server
• You can check out files from the server to 

work on them
• Has been around for many years
• Examples: Subversion, CVS

Possible issues:
• When the server is down, you cannot 

work on the files
• If there is no proper backup for a central 

server, you may lose everything if a 
server’s hard drive is corrupted

Centralized Version Control Systems

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control


How it works:
• You don’t just check out a snapshot of a 

version, you mirror the whole version 
database

• Examples: Git, Mercurial, Bazaar
• Good for collaboration and for keeping 

multiple backups

Distributed Version Control Systems

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control


Why it is Important to have Version Control

• Keep track of changes: 

▪ Who, when, what, and (sometimes) why

• Easy to work collaboratively:

▪ Different lab member(s) work on the same file

• Backup: 

▪ Get the previous version back if you mess up something

Note: You can use version control for any type of files, not just code



Scenarios

• You saw some changes in a file, but don’t remember if your 
collaborator made these changes or you did it yourself

• You and your collaborators want to work on the same file 

• You accidently deleted an important chunk of code while 
debugging and there is no way to undo the deletion



What do Other Researchers Think about Git/GitHub? 

• A survey, conducted by Investigating & Archiving the Scholarly Git
Experience (IASGE), targeting scholars who use Git

• Preliminary results show that

▪ Git is the most used version control system

▪ Reasons for using git hosting platform (such as GitHub) are

o Collaboration (primary)

o Openness (secondary) 

https://investigating-archiving-git.gitlab.io/
https://zenodo.org/record/3823365#.X6GtWchKg2x


What are Git and GitHub?

• Git is 
▪ A version control system

▪ Free and open source 

▪ https://git-scm.com/

• GitHub is
▪ A free git hosting platform

▪ Hosting software development and version control using Git

▪ Bought by Microsoft in 2018

▪ https://github.com/

https://git-scm.com/
https://github.com/


Git is like taking a snapshot of your files, at different 
moments, and you can go back to previous versions



Git Terminology

• Repository (Repo): Local and Remote

▪ A place to store all files, contents, folders, versions, etc.

▪ Local repo: in your own computer

▪ Remote repo: GitHub (this workshop) or other git hosting platforms



Git Terminology

When working on your own computer (local):

• Working directory
▪ A directory with your files in a local computer

• Staging area
▪ An area to store changed files, but are not yet 

committed

• Commit
▪ (verb): save change(s) to a repo

▪ (noun): change(s) to a file



Git Terminology

Commit hash

▪ A unique identifier for a commit

▪ SHA-1 hashes: An algorithm takes some data as input and 
generates a unique 40-character string from it

▪ GitHub commit hash: usually it only takes the first 7 characters



Imagine that You are Moving…

working 
directory

staging 
area

localrepogit commitgit add



Imagine that You are Moving…

Retrieve old items (versions) 
from the storage unit (version database)



Git Terminology

When communicating with a remote repo (like GitHub)

• Push and Pull (git push and git pull)
▪ Push: upload contents from local to remote repo

▪ Pull: download contents from remote to local repo

git push

git pull

upload

download





Git and GitHub Desktop: Installation

• Git

▪ A command line tool

▪ Download and install Git (You can skip this if you already installed GitHub Desktop)

▪ Documentation

• Git client

▪ Graphical User Interface (GUI) tools for committing and browsing (examples)

▪ We will demo GitHub Desktop here 

▪ GitHub Desktop documentation

• Create a GitHub account

https://git-scm.com/downloads
https://git-scm.com/doc
https://git-scm.com/downloads/guis/
https://desktop.github.com/
https://docs.github.com/en/desktop


Authenticating and Configuring GitHub Desktop

• You only need to do this once
• Authenticating to GitHub using the browser (instruction)

▪ File -> Options -> Accounts -> GitHub.com 
▪ Click 
▪ Type in your GitHub username and password

• Configuring GitHub Desktop (instruction)
▪ File -> Options -> Git
▪ Enter your username and email

o Commit email address

https://docs.github.com/en/desktop/getting-started-with-github-desktop/authenticating-to-github
https://docs.github.com/en/desktop/getting-started-with-github-desktop/configuring-and-customizing-github-desktop
https://docs.github.com/en/github/setting-up-and-managing-your-github-user-account/setting-your-commit-email-address#setting-your-commit-email-address-on-github


GitHub Desktop Demo

• Create a repo (local and remote)

• Make change to a file and do commits

• Communicate with GitHub
▪ Push and pull

▪ Ignore files

• Branches
▪ Merge and manage conflicts

▪ Mange conflicts: pull request

• Clone and fork





Local Workflow

• Create a new local repo on your computer

▪ Check the hidden folders

• Add and edit files in this folder (working directory)

▪ Add a file to this folder

▪ Write something in the ReadMe file and save

• Commit these changes to the local repo



Local Workflow

• Move to the staging area and commit changes to local repo

▪ Checkmark the file(s) you want to commit

▪ Write notes in the commit message box

▪ Click 

• Commit hash

▪ A unique identifier for a commit

▪ GitHub commit hash: usually it only takes the first 7 characters

▪ Can you find where is the commit hash in your GitHub Desktop?





Communicate with GitHub

• Publish this local repo to GitHub

• Push contents to GitHub

▪ This step will update files on GitHub

• Pull contents from GitHub

▪ Update the local repo with GitHub files

• Ignore file(s) or folder(s)

▪ Choose not to upload certain file(s) or folder(s) to GitHub repo



gitignore: Ignore File/Folder

• What to ignore? 
▪ The file is not used by your project

▪ The file is not used by anyone else in your team

▪ The file is generated by another process

▪ The file has personal or sensitive information

• Examples
▪ .Rproj.user folder or .Rhistory file that auto-generated

▪ Personal notes

▪ Research data with PII/PHI

▪ API keys https://zellwk.com/blog/gitignore/

https://zellwk.com/blog/gitignore/


gitignore: Ignore File/Folder

• Create a file that we want to ignore (log.txt)

• Start a .gitignore file 

▪ Do this step BEFORE you commit anything

▪ Go to Repository tab and select Repository Settings

▪ List the file(s) or folder(s) you want to ignore

▪ Click Save



gitignore: Ignore File/Folder

• You can go to your local git repo and will find 

▪ A .gitignore file with a list of files to be ignored

▪ None of the files listed in the .gitignore file will show up in your 
GitHub repo

▪ You can add file/folder names directly into this file and save or 
repeat the above steps in GitHub Desktop



Branch

• You want to make changes, fix bugs, etc., but don’t want to mess up 
the main copy

• You and your collaborator want to work on the same file

mainSolution: Create a branch and make 
changes in that branch. 

Once you feel comfortable with your 
changes, you can merge your changes 
back to the main branch



Merge a Branch

• Send a “pull request” to merge branch to the main branch

▪ Can only have one pull request each time

▪ Can create another pull request once the previous pull request 
is merged

main



https://www.nobledesktop.com/learn/git/git-branches

Potential Problem for Multiple Branches?

https://www.nobledesktop.com/learn/git/git-branches


How to Resolve a Conflict?

• GitHub will show you the conflict and you need to decide 
which change you want to keep

• GitHub demo: resolve conflicts

Learn more: https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-merge-conflict-on-github

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-merge-conflict-on-github


Clone and Fork a GitHub Repository

• Clone a repository from GitHub (to local machine)

▪ Clone other people’s repo 

▪ Clone your own

• Fork a repository from GitHub (to your GitHub account)

▪ Fork a repository that you don’t have write access

• What’s the difference?

▪ Fork (GitHub), Clone (local computer)

▪ Make changes: Fork (Pull request), Clone (Push)



https://www.toolsqa.com/git/difference-between-git-clone-and-git-fork/

FORK CLONE

https://www.toolsqa.com/git/difference-between-git-clone-and-git-fork/


Resources: Learning Git and GitHub

• GitHub Skills
• Resources to learn Git
• Git and GitHub learning resources
• Learn Git Branching: An interactive guide
• Version control with Git by Coursera
• Reproducible Research Toolkit by coding2share

https://skills.github.com/
https://try.github.io/
https://docs.github.com/en/free-pro-team@latest/github/getting-started-with-github/git-and-github-learning-resources
https://learngitbranching.js.org/
https://www.coursera.org/learn/version-control-with-git?ranMID=40328&ranEAID=JVFxdTr9V80&ranSiteID=JVFxdTr9V80-QPRJ9S301pYmB92xlAr7jw&siteID=JVFxdTr9V80-QPRJ9S301pYmB92xlAr7jw&utm_content=10&utm_medium=partners&utm_source=linkshare&utm_campaign=JVFxdTr9V80
https://coding2share.github.io/ReproducibilityToolkit/Mod5GitHub.html


Resources: GitHub Desktop

• GitHub document
• GitHub Desktop document
• Branches in GitHub using GitHub Desktop
• GitHub Tutorial 2020 - Beginner's Training Guide
• How to resolve a Merge Conflict in GitHub Desktop

https://docs.github.com/en/github
https://docs.github.com/en/desktop
https://www.youtube.com/watch?v=6cLlX0ZqO5Q
https://www.youtube.com/watch?v=iv8rSLsi1xo&t=313s
https://www.youtube.com/watch?v=MIVW0sijSjY


Resources: GitHub and R Studio

• Happy Git and GitHub for the useR
• Creating R Studio projects from GitHub Repositories:

▪ https://www.youtube.com/watch?v=YxZ8J2rqhEM
▪ https://happygitwithr.com/new-github-first.html

• Link an existing R project to GitHub:
▪ https://happygitwithr.com/existing-github-first.html
▪ https://hansenjohnson.org/post/sync-github-repository-with-existing-r-

project/

• RMarkdown and GitHub
• Using the ATOM editor with R

https://happygitwithr.com/
https://www.youtube.com/watch?v=YxZ8J2rqhEM
https://happygitwithr.com/new-github-first.html
https://happygitwithr.com/existing-github-first.html
https://hansenjohnson.org/post/sync-github-repository-with-existing-r-project/
https://resources.github.com/whitepapers/github-and-rstudio/
http://www.goring.org/resources/atom_and_r.html


Resources: Command Lines

You can use Git command lines (without using GitHub 
Desktop) for everything we talked about in this workshop

• Git & GitHub crash course for beginners

• Git cheatsheet

• Git documentation

https://gitforwindows.org/

https://www.youtube.com/watch?v=SWYqp7iY_Tc&t=42s
https://education.github.com/git-cheat-sheet-education.pdf
https://git-scm.com/docs
https://gitforwindows.org/


Resources: Other than Coding

GitHub is not only for code management, you can use it for 
other purposes. 

For example:

• Manuscript revision: Organizing a Paper Revision with GitHub

• Group project: Data Curation Network Primers

• Share a Template: Best-README-Template

• Any collaborative projects you can think of!

https://gertjanvandenburg.com/blog/github_paper_revision/
https://datacurationnetwork.org/outputs/data-curation-primers/
https://github.com/othneildrew/Best-README-Template


Resources: Other Git Hosting Platforms

Here are a few other Git hosting platforms (other than GitHub):

https://beanstalkapp.com/
https://bitbucket.org/

https://sourceforge.net/
https://about.gitlab.com/

https://about.gitlab.com/
https://bitbucket.org/
https://sourceforge.net/
https://beanstalkapp.com/
https://beanstalkapp.com/
https://bitbucket.org/
https://sourceforge.net/
https://about.gitlab.com/


Resources: JHU GitHub Enterprise Account

• GitHub Plans and Pricing: Free, Team, Enterprise

• JHU GitHub Enterprise account

▪ Single sign-on with JHED 

▪ Create a team GitHub space for your lab

▪ Up to 50 GB storage space

▪ Contact us if you are interested in getting one

https://github.com/pricing



